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Abstract. Segmenting scientific abstracts and full-text based on their rhetorical
function is an essential task in text classification. Small rhetorical segments can
be useful for fine-grained literature search, summarization, and comparison.
Current effort has been focusing on segmenting documents into general sections
such as introduction, method, and conclusion, and much less on the roles of
individual sentences within the segments. For example, not all sentences in the
conclusion section are describing research findings. In this work, we developed
rule-based and machine learning methods and compared their performance in
identifying the finding sentences in conclusion subsections of biomedical
abstracts. 1100 conclusion subsections with observational and randomized
clinical trials study designs covering five common health topics were sampled
from PubMed to develop and evaluate the methods. The rule-based method and
the bag-of-words based machine learning method both achieved high accuracy.
The better performance by the simple rule-based approach shows that although
advanced machine learning approaches could capture the main patterns, human
expert may still outperform on such a specialized task.

Keywords: Text classification � Rule-based approach � Machine learning �
Biomedicine

1 Introduction

Categorizing sentences by their rhetorical functions is an important task in literature
mining. It is particularly useful for the fields that face the challenge of overwhelming
volume of publications. For example, identifying the results in empirical studies is a
critical step for writing systematic reviews in Evidence-Based Medicine (EBM) [11]. It
is also a step toward further analyses, such as identifying potential exaggerations in
conclusions [6, 8].

To date many studies have tried to automatically segment sentences either in
abstracts or full-texts into sections (e.g., [2, 7, 13, 15, 20]). Nearly all existing studies
focus on the general rhetorical level of sentences in the given contexts, classifying
abstracts or full text into introduction, method, result and discussion (IMRaD) format.
However, simply classifying sentences into the IMRaD structure does not provide
adequate granularity for retrieving key information such as study findings, because
sentences in each subsection may still serve different rhetorical functions. For instance,
sentences in the conclusion subsection can describe studies’ findings, limitations, or
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implications for future studies respectively. As shown in the following excerpt, the
underscored sentence is the finding of the study, while the second and third sentences
represent the implications for future studies.

The present meta-analysis suggests that insulin therapy may increase the risk of CRC. More
prospective cohort studies with longer follow-up durations are warranted to confirm this
association. Furthermore, future studies should report results stratified by gender and race and
should adjust the results by more confounders. (PMID 25099257)

In this work, we focus on the automatic categorization of sentences in conclusion
subsections from structured biomedical abstracts. Our goal is to determine whether
sentences in conclusions subsections describe study findings, as opposed to the non-
finding ones that describe study implications, limitations, recommendations, and
clinical trial registration information.

Rule-based and machine learning methods are the two mainly used approaches in
prior sentence categorization studies. Most studies found the machine-learning
approaches using features of bag-of-words, semantic relations or structural informa-
tion of sentence positions work well (e.g., [2, 11, 13, 15]); however, studies also
suggest that for texts with controlled vocabularies, rule-based approaches can also be
effective [5, 10]. Therefore, we developed both rule-based and machine learning
methods and compared their performance in identifying the finding sentences in con-
clusion sections. We used 1000 biomedical abstracts from PubMed as training and 100
abstracts for testing to validate these two methods.

2 Related Work

The task of identifying finding sentences in conclusion subsections of abstracts is
closely related to automatic section identification and summarization for scientific
articles. To realize the automatic process, many studies have aimed at developing
schemas and corpora for categorization (e.g., [21, 23, 25]). For example, Teufel and
Moens [24] introduced a scheme of Argumentative Zoning (AZ) which classifies
sentences in scientific text into categories such as aim, background, own, contrast, and
basis on their rhetorical status in scientific discourse. Their experiments suggest that the
proposed AZ framework can be used to identify and summarize novel contributions
and backgrounds of scientific articles. Liakata et al. [17] proposed two classification
schemas to capture the hypotheses, motivations, methods, conclusions etc. based on the
rhetorical nature of 265 full papers in physical chemistry and biochemistry. Guo et al.
[12] compared the validity of three pre-existing categorization schemas developed from
full-text articles on the abstracts of cancer risk assessments. Their results suggest the
possibility of applying full-text sentence categorization schema on abstracts.

Previous studies typically modeled section identification process as text classifi-
cation task, which determines a pre-defined label to each individual sentence based on
their rhetorical function. In this line of method, classifiers such as Multinomial Naïve
Bayes (MNB) and Support Vector Machines (SVM) are widely used (e.g., [2, 11, 12,
23]). Studies reached different conclusions regarding the performance of the classifiers.
For example, Agarwal and Yu [2] trained both MNB and SVM classifiers to identify
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sentences of articles sampled from BioMed Central into IMRaD structures. Their
results show that MNB performed better than SVM at classifying sentences using bag-
of-words with enriched features of words tenses. Gabb et al. [11] compared the per-
formance of models using Naïve Bays (NB) and SVM to automatically identify result
sentences from full-text journal articles. Their experiment results indicate that though
models built with NB and SVM obtain similar results, classifier trained with SVM
using top-100 terms and sentence locations as features tended to have slightly higher
F1 scores. In addition to modeling sentence type or section identification as text
classification task, some studies modeled the structure of article sections as a sequence
labeling problem. Hirohata et al. [13] used n-gram, relative sentence location, and the
features from previous and proceeding sentences for text representation to classify the
sections of academic abstract into objectives, methods, results, and conclusions using
Conditional Random Fields (CRFs). The feature sets of ngram with surrounding sen-
tence features trained with CRFs outperformed the model using SVM. However, these
studies used different dataset to develop their methods, thus classification results may
not be necessarily comparable to each other.

Other than these machine learning approaches, previous studies also applied rule-
based methods to identifying sections or to similar biomedical applications. Friedman
et al. [10] built a language processor which relied on semantic grammars to extract
clinical information in patient documents and mapped them into controlled vocabulary
terms. Chapman et al. [5] developed a simple algorithm for identifying negated sen-
tences in discharged summaries. They implemented a sets of negation phrases with
regular expression to detect a large portion of pertinent negatives in the document. Yu
et al. [26] relied on a set of pattern-matching rules for mapping an abbreviation in
biomedical articles into its full forms. Kilicoglu et al. [14] applied a rule-based
approach to automatically recognize self-acknowledged limitations in clinical research
publications. The success of these studies indicates that for text with controlled lan-
guage indicators and patterns, the simple rule-based approach might be an effective
one. In recent years, the lexicon-enhanced approach also shows its success in other
NLP applications such as sentiment analysis [3, 16], and emotion-detection [4].

Different from previous studies of classifying scientific abstracts and full-text into
the general categories, our work intends to identify sentences about study findings from
the conclusion subsections in biomedical abstracts. We took advantage of the lexicon-
enhanced rule-based NLP approach for sentence type recognition and compared its
performance to the commonly used machine learning methods in this work.

3 Method

In this section, we first introduce the process of corpus construction for training and
testing (Sect. 3.1). Then we discuss about the rule-based approach (Sect. 3.2), the
machine learning classification methods (Sect. 3.3) and evaluation measures used in
this study.
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3.1 Corpus Construction

To the best of our knowledge, no prior corpus is available for finding sentence identi-
fication, we then used structured abstracts from original scientific research papers for
corpus construction. We focused on the biomedical domain and chose PubMed as the
source. The PubMed database has more than 27 million citations for biomedical liter-
ature from Medline, life science journals, and online books. Since different study
designs may use varied language to describe their research, we applied stratified sam-
pling approach to collect both observational and randomized clinical trials (RCTs)
studies from the platform. PubMed’s search interface provides one search criterion
“Publication Type” that is derived from the MeSH terms for PubType in MEDLINE
records (2018MeSH). We applied article’s MeSH term to select the RCTs articles
(MeSH Unique ID: D016449); used the searching method introduced in [1] to collect
case-control, cross-sectional, retrospective, and prospective studies within observational
studies; and rescanned the abstracts sections with the keywords to exclude the irrelevant
ones. To account for the vocabulary variation among different health issues, we selected
five common health topics – nutrition, diabetes, obesity, breast cancer, and cholesterol.
The whole downloaded set contains 63498 conclusion subsections from structured
abstracts in total. The XML files in PubMed contain occasional parsing errors, so
sometimes the conclusion subsections may include paragraphs in the following sections.
For quality control purpose, we used the Stanford CoreNLP tool [18] to split the con-
clusion subsections into sentences, and removed the articles with conclusions longer
than four sentences. We then sampled equal number of articles with conclusion length as
1, 2, 3, or 4 sentences from the 63498 set. Our sampled corpus includes 1100 structured
abstracts, within which we used 1000 as the training set and 100 as the testing set.

To construct a reliable human-annotated dataset to serve as ground truth, we
annotated each sentence in the selected corpus as either category-0 (non-finding) or
category-1 (finding). Table 1 shows examples of the two sentence types. Category-0
refers to non-finding sentences (as shown in Examples 1 and 2); while category-1 refers
to sentences explicitly talking about study finding (as shown in Examples 3 and 4). An
inter-coder reliability test on a sample of 200 articles with 510 sentences from the
training set showed almost perfect agreement of the schema. Specifically, two graduate
students with the education background of information studies labelled the sentences
extracted from the conclusion subsection of the structured abstracts. Annotators
identified the sentence category based on their linguistic indicators. We applied Cohens
Kappa k as the inter-coder agreement measure [9]. Kappa values of .61 or above are
considered as substantial agreement and .81 or above as almost perfect agreement [19].
The overall k value was .85, indicating the annotation schema for finding sentence
identification reached almost perfect inter-coder agreement (Table 2 shows the detailed
inter-coder agreement). Disagreements in the annotation were later resolved by the two
annotators through discussion.

Annotator 1 annotated the conclusion subsection of the rest 900 articles from both
training and testing sets. The final corpus contained 2735 annotated sentences in the
conclusion subsections of abstracts from 1100 articles, of which 711 sentences in the
conclusion subsections belonged to category-0, and 2024 sentences belonged to cat-
egory-1. Table 3 shows the number of sentences per category in the developed corpus.
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3.2 A Rule-Based Approach for Automatic Finding Sentence
Identification

We framed the automated identification process as a sentence-level text classification
task, and manually identified rules indicative of sentence types. A total of 181 rules
were derived from training set, of which 14 were study backgrounds, 13 were study
limitations, 59 were implications, 84 were recommendations, and 11 ones were about
the clinical trial registration. These rules were generated based on iterative rounds of
keywords searching and pattern matching for the linguistic indicators of study back-
grounds, limitations, implications, recommendations, and information of clinical trial
registration. Similar as the existing rule-based approaches [2, 5], we used regular
expression to identify those generated patterns in the original annotated sentences.

Table 1. Finding and non-finding sentences from conclusion subsections.

Sentence Annotation

Example 1: (PMID: 28640840)
We propose a novel AI disease-staging system for grading diabetic retinopathy
that involves a retinal area not typically visualized on fundoscopy and another
AI that directly suggests treatments and determines prognoses

Category-0

Example 2: (PMID: 26504068)
This approach may, however, be difficult to implement on a large scale

Category-0

Example 3: (PMID: 28953631)
The results of this study showed that TPVBRA combined with bupivacaine and
dexmedetomidine can enhance the duration and quality of analgesia without
serious adverse events

Category-1

Example 4: (PMID: 28746662)
Our current analysis does not support the existence of an association between
age at first childbirth and adult-onset diabetes among postmenopausal women,
which had been reported previously

Category-1

Table 2. Confusion matrix for the sentence type annotation.

Kappa = .85 A2
Category-0 Category-1 All

A1 Category-0 163 11 174
Category-1 23 313 336
All 186 324 510

Table 3. Sentence type distribution in annotated corpus.

Dataset Category-0 Category-1 Total

Training set 659 1841 2500
Testing set 52 183 235
Total 711 2024 2735
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We looked for keywords like “exist in literature”, “growing literature”, “literature to
date” for introduction of study backgrounds; indicators like “limited by”, “limita-
tions” for study limitations; phrases such as “further assessment”, “future studies”,
“future research”, “follow-up exploration” for the implications of current study
findings for future explorations; expressions of “clinicians should”, “health policy
makers should”, “actions should focus on” for the recommendations of practitioners
and experiments alike; and words like “trial registration”, “clinical trial registration”
for the information of clinical trial registration in sentences of conclusion subsections.

All identified rules were grouped into two sets. The first set included 153 short
language patterns represented by regular expressions, which were short terms and
keywords indicative of non-finding sentences (e.g., “future research”, “further
investigation”, “other studies”, “should confirm these findings”). The second set
contained 28 rules that captured longer language patterns describing non-finding sen-
tences. For example, one rule in the second set is that if a sentence has phrases of “is
warranted” or “are warranted”; and it does not have conjunctions of “although” or
“though”, it is a non-finding sentence. We applied all rules into a rule-based classifier,
detecting the category of each input sentence. If a sentence matches any of the rules in
the first pattern set, it will be assigned to category-0 as a non-finding sentence; else the
classifier will continue to check if the sentence matches any of the other rules in the
second set. If the input sentence does not match any of the identified 181 patterns in the
first and second pattern sets, it will then be assigned to category-1; namely the sentence
depicts the study findings. We used macro-averaged precision, recall and F1 scores to
evaluate the performance of the proposed rule-based approach on the testing dataset.

3.3 Machine Learning Approaches for Automatic Finding Sentence
Identification

We measured the performance of machine learning approaches using variations of bag-
of-words representations, and the language indicators from the identified 181 rules as
features. For the bag-of-words representations, we chose NB and SVM algorithms with
different vectorization methods and enriched features to train the sentence type clas-
sifiers, using Scikit-learn python package [22]. NB and SVM are the most popular
classification algorithms in current studies of segmenting scientific abstracts and full-
text [2, 11, 12]. We used two NB algorithms – multivariate Bernoulli model and the
multinomial model. The first one uses word presence and absence as feature value
(BNB); while the second one uses word frequency (MNB). For SVM, we combined the
SVM (Liblinear) algorithm with three different frequency measures – word presence
and absence (SVM-boolean), word frequency (SVM-tf), and word frequency weighted
by inverse document frequency (SVM-tfidf).

To further validate the performance of syntactic and semantic structures in classifi-
cation, we extracted part-of-speech (POS) and dependency parsing from the input sen-
tences using Stanford CoreNLP [18]. The bag-of-words machine-learning approaches
then contained the following four feature vectors with different representation methods:
(1) simple bag-of-words; (2) bag-of-words with POS tagging; (3) bag-of-words with
enhanced dependency parsing; (4) bag-of-words enriched with both POS tagging and
enhanced dependency parsing (combining features in (2) and (3) together). For example,
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Original sentence: Physical activity is also associated with favorable HDL-C.
(PMID: 28167327)
Bag-of-words: Physical, activity, is, also, associated, with, favorable, HDL-C
Bag-of-words with POS tagging: Physical-JJ, activity-NN, is-VBZ, also-RB,
associated-VBN, with-IN, favorable-JJ, HDL-C-NN
Bag-of-words with enhanced dependency parsing: amod(activity-2, Physical-1)
nsubjpass(associated-5, activity-2) auxpass(associated-5, is-3) advmod(associ-
ated-5, also-4) root(ROOT-0, associated-5) prep(associated-5, with-6) amod(HDL-
C-8, favorable-7) pobj(with-6, HDL-C-8)

For the machine learning approach based on language indicators from the hand-
crafted rules as features, the presence or absence of the identified 181 patterns in the
rule-based approach was used in training the classifier. We applied the Decision Tree
classifier in Scikit-learn [22] with its default parameter settings as the implementation
of the Decision Tree algorithm and compared its performance to the BNB and SVM
algorithms using the same representation.

Considering the size of current dataset and the imbalance distribution of category-0
and category-1, we used 10 folds cross-validation for the evaluation of machine
learning approaches and reported precision, recall, F1 scores of each category, in
addition to the macro-averaged precision, recall, and F1 scores.

4 Result

The majority vote baseline of the test set is .78. Among the three approaches, our
experiment result shows that the rule-based method achieved the best performance with
an macro-averaged F1 score at .96 level on the test set (as shown in Table 4).

The machine learning models based on bag-of-words feature also achieved high
performance. The best machine learning model is BNB with unigram and bigram
features with a macro-averaged F1 score at .86 level, lower than the .96 by the rule-
based model. Tables 5 and 6 list the feature engineering options and results. Table 5
lists the results of unigram experiments. BNB, MNB, and SVM-tfidf have very similar
macro-averaged scores across the two sentence type categories, but BNB has slightly
higher macro-averaged precision (.84) and recall (.85) values. Table 6 shows that
adding bigram features slightly improves the performance of all models except SVM-tf
and SVM-tfidf. As shown in Table 6, BNB with unigram and bigram bag-of-words
representation has the highest precision (.86), recall (.87) and F1 scores (.86) among all

Table 4. Performance of the rule-based model.

Method Sentence type Accuracy Precision Recall F1 Score

Rule-based Category-0 .90 .92 .90 .91
Category-1 .98 .97 .98 .98
Macro-averaged .96 .96 .96 .96
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the machine-learning methods using the same representation. It also has higher accu-
racy than its counterpart in the bag-of-words unigram experiment and the best per-
formance in bag-of-words unigram representation.

Adding the enriched features introduced in Sect. 3.3 did not further improve the
performance of the machine learning models. Among all the models with enriched
features, SVM-tfidf using unigram bag-of-words feature with dependency parsing

Table 5. Performance of the machine learning models based on unigram features.

Method Sentence type Accuracy Precision Recall F1 score

BNB Category-0 .79 .76 .79 .77
Category-1 .91 .93 .91 .92
Macro-averaged .88 .84 .85 .85

MNB Category-0 .74 .79 .74 .76
Category-1 .93 .91 .93 .92
Macro-averaged .88 .85 .83 .84

SVM-boolean Category-0 .76 .73 .76 .74
Category-1 .91 .91 .90 .91
Macro-averaged .86 .82 .83 .82

SVM-tf Category-0 .75 .73 .75 .74
Category-1 .90 .91 .90 .91
Macro-averaged .86 .82 .83 .82

SVM-tfidf Category-0 .70 .82 .70 .76
Category-1 .95 .90 .95 .92
Macro-averaged .88 .86 .82 .84

Table 6. Performance of the machine learning models based on unigram and bigram features.

Method Sentence type Accuracy Precision Recall F1 score

BNB Category-0 .82 .78 .82 .80
Category-1 .92 .94 .92 .93
Macro-averaged .89 .86 .87 .86

MNB Category-0 .75 .80 .75 .77
Category-1 .93 .91 .93 .92
Macro-averaged .89 .86 .84 .85

SVM-boolean Category-0 .75 .75 .75 .75
Category-1 .92 .91 .91 .91
Macro-averaged .87 .83 .83 .83

SVM-tf Category-0 .75 .74 .75 .74
Category-1 .91 .91 .91 .91
Macro-averaged .86 .82 .83 .82

SVM-tfidf Category-0 .72 .84 .72 .78
Category-1 .95 .91 .95 .93
Macro-averaged .89 .87 .84 .85
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relations had the best performance. However, it did not outperform the best machine
learning model with only bag-of-words feature.

The machine learning models based on the language indicators from the hand-crafted
rules did not perform the ruled-based method. Table 7 shows the model using Decision
Tree has the best macro-averaged precision (.96), recall (.88) and, F1 scores (.91).

5 Discussion

In our experiment, the rule-based method and the bag-of-words based machine learning
method both achieved high accuracy, suggesting that the two approaches are effective
in identifying finding sentences in conclusion subsections of structured abstracts. The
high precision, recall and F1 scores of the rule-based approach on the testing set
confirm our previous assumption that the rules developed based on linguistic indicators
and patterns of sentences in conclusion subsections are more effective to identify
finding sentences extracted from structured abstracts.

In comparison, machine learning models based on bag-of-words representations
and indicators in identified rules as features tend to have higher precision and recall
values in classifying category-1, but relatively lower values in category-0. Feature
analyses of the best machine learning method using bag-of-words representation
indicate that the classifier has learned some basic sentence type indicators like “further
studies”, “further research”, “future studies”, “larger studies”, “associated with”.
However, it was not able to learn linguistic patterns capturing larger language units in
non-finding sentence as included in the second set of identified rules.

Compared to the rule-based approach, the machine learning models based on lin-
guistic indicators in rules as features are more sophisticated in the process of deciding
sentence types. Feature ranking result of the most important features learned by the
Decision Tree model shows that rules of the clinical trial registration information, and
implications of future studies are the most important ones, thus the model has learned
some patterns on non-finding sentences. However, this more complicated model did not
outperform the simpler rule-based model.

Table 7. Performance of using language indicators from hand-crafted rules as features.

Method Sentence Type Accuracy Precision Recall F1 Score

Decision Tree Category-0 .77 .99 .77 .87
Category-1 .99 .92 .99 .96
Macro-averaged .94 .96 .88 .91

BNB Category-0 .68 .99 .68 .81
Category-1 .99 .90 .99 .95
Macro-averaged .92 .94 .84 .88

SVM Category-0 .73 .99 .73 .84
Category-1 .99 .91 .99 .95
Macro-averaged .93 .95 .86 .90

Identifying Finding Sentences in Conclusion Subsections 687



Though the rule-based approach achieved satisfactory results detecting finding
sentences, error analyses of the misclassified cases suggest room for improvement. The
most common error can be attributed to the confounding keywords in finding sen-
tences: a finding sentence can mention both study findings and the implication for
future study. The keywords of future study implications will then lead to detection
error. On the other hand, current rules can capture the non-finding sentences which
contain explicit language indicators. However, for non-finding sentences lacking the
clear cues like indications of study limitations (e.g., “limitations”, “limited by”) or
recommendations (e.g., “these findings suggest that”, “should be introduced to”), such
as “Such information is crucial to target Web-based support systems to different patient
groups”, the rules would not be able to capture them.

6 Conclusion

In this work, we focus on detecting finding and non-finding sentences from the con-
clusion subsections of structured abstracts. The rule-based method and the bag-of-
words based machine learning method both achieved high accuracy. The better per-
formance by the simple rule-based approach shows that although advanced machine
learning approaches could capture the main patterns, human expert may still outper-
form on such a specialized task. For text with controlled linguistic patterns, the rule-
based one could be more suitable. Considering the errors caused by the current rules, in
future work we will conduct deeper semantic analysis on the generated rules to either
introduce more synonyms of identified keywords or to prevent the confounding effects
of those patterns for higher precision and recall during the classification. Meanwhile,
we will further explore the effectiveness of this rule-based approach for finding sen-
tence recognition in unstructured abstracts.
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